A Weighted Maximum Entropy Language Model for Text Classification
نویسندگان
چکیده
The Maximum entropy (ME) approach has been extensively used in various Natural Language Processing tasks, such as language modeling, partof-speech tagging, text classification and text segmentation. Previous work in text classification was conducted using maximum entropy modeling with binary-valued features or counts of feature words. In this work, we present a method for applying Maximum Entropy modeling for text classification in a different way. Weights are used to select the features of the model and estimate the contribution of each extracted feature in the classification task. Using the X square test to assess the importance of each candidate feature we rank them and the most prevalent features, the most highly ranked, are used as the features of the model. Hence, instead of applying Maximum Entropy modeling in the classical way, we use the X square values to assign weights to the features of the model. Our method was evaluated on Reuters-21578 dataset for test classification tasks, giving promising results and comparably performing with some of the “state of the art” classification schemes.
منابع مشابه
Summary of Text Categorization based on Maximum Entropy Model
Since 1990s, the maximum entropy model has been used in text categorization and achieves good results in Natural Language Processing since its framework and algorithm were established. On the basis of the Maximum Entropy Model, scholars improve it and make a more in-depth study. Using Maximum Entropy Model for text sentiment categorization has become a hot research topic in recent years. In thi...
متن کاملUsing Maximum Entropy for Text Classification
This paper proposes the use of maximum entropy techniques for text classification. Maximum entropy is a probability distribution estimation technique widely used for a variety of natural language tasks, such as language modeling, part-of-speech tagging, and text segmentation. The underlying principle of maximum entropy is that without external knowledge, one should prefer distributions that are...
متن کاملA Document Weighted Approach for Gender and Age Prediction Based on Term Weight Measure
Author profiling is a text classification technique, which is used to predict the profiles of unknown text by analyzing their writing styles. Author profiles are the characteristics of the authors like gender, age, nativity language, country and educational background. The existing approaches for Author Profiling suffered from problems like high dimensionality of features and fail to capture th...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملGenetic Algorithm based Feature Selection in High Dimensional Text Dataset Classification
Vector space model based bag-of-words language model is commonly used to represent documents in a corpus. But this representation model needs a high dimensional input feature space that has irrelevant and redundant features to represent all corpus files. Non-Redundant feature reduction of input space improves the generalization property of a classifier. In this study, we developed a new objecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005